APPENDIX III

Formulas for the Determination of Significance Levels

Age-Specific Rates

For a given occupation and cause group, let

 r_{i1} = the proportion in age group i who die, for that occupation where $r_{i1} = \frac{d_{i1}}{n_{i1}}$ or deaths divided by population, and

 r_{i2} = the proportion in age group i who die, for all **other** occupations

where
$$r_{i2} = \frac{d_{i2}}{n_{i2}}$$
.

Then the ratio of the age-specific rates (or proportions) is

$$\widehat{\Theta}_{i} = \frac{r_{i1}}{r_{i2}}$$

To assist large sample normality of this estimater, we take natural logarithms:

$$\ln \widehat{\Theta}_{i} = \ln r_{i1} - \ln r_{i2}$$

which has a variance

$$V (\ln \widehat{\Theta}_i) = V (\ln r_{i1}) + V (\ln r_{i2}).$$

This variance may be estimated using a linearized Taylor series approach so that

$$V \left(\ln \widehat{\Theta}_{i} \right) \stackrel{:}{=} \left(\frac{1}{r_{i1}} \right)^{2} V \left(r_{i1} \right) + \left(\frac{1}{r_{i2}} \right)^{2} V \left(r_{i2} \right)$$
where
$$V \left(r_{i1} \right) = \frac{r_{i1}}{n_{i1}}$$

and V
$$(r_{i2}) = \frac{r_{i2}}{n_{i2}}$$
,

following the Poisson distribution.

A Z-score for significance of the ratio is computed:

$$Z = \frac{\ln r_{i1} - \ln r_{i2}}{\sqrt{V \left(\ln \widehat{\Theta}_{i}\right)}}$$

where $\ln\,\widehat{\Theta}_i$ – $\ln\,1 = \ln\,\widehat{\Theta}_i$ – $0 = \ln\,r_{i1}$ – $\ln\,r_{i2}$

with V ($\ln \widehat{\Theta}_i$) calculated as above.

If the absolute value of this Z-score is greater than 2.57, then the rate ratio is considered significantly higher or lower than one at p < .01 and is flagged with one asterisk; if the absolute value of the Z-score is greater than 3.3, then the ratio is considered significantly different from one at p < .001 and is flagged with two asterisks.